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tering can be easily taken into account by adding 
additional complex contributions Vg (z) and Vg to (2) 
and (8) (Yoshioka, 1957; Nagano, 1~90) in two- and 
three-dimensional Bloch-wave theories, respectively. 

References 

BETHE, H. (1928). Ann. Phys. (Leipzig), 87, 55-129. 
COWLEY, J. M. & MOODm, A. F. (1957). Acta Cryst. 10, 609-619. 
DARWIN, C. G. (1914). Philos. Mag. 27, 675-690. 
DOYLE, P. A. & TURNER, P. S. (1967). Acta Cryst. A24, 390--397. 
FIELDS, P. M. & COWLEY, J. M. (1978). Acta Cryst. A34, 103-112. 
FUJIMOTO, F. (1959). J. Phys. Soc. Jpn, 14, 1558-1568. 
ICHIMIYA, A. (1983). Jpn. J. AppL Phys. 22, 176-180. 
ISHIZUKA, K. & UYEDA, N. (1977). Acta Cryst. A33, 740-749. 

KIM, H. S. & SHEININ, S. S. (1982). Phys. Status Solidi B, 109, 
807-816. 

MAGNUS, S. (1954). Commun. Pure Appl. Math. 7, 649-673. 
MAKSYM, P. A. (1985). Surf Sci. 149, 157-174. 
MAKSYM, P. A. & BEEBY, J. L. (1981). Surf Sci. 110, 423--436. 
NAGANO, S. (1990). Phys. Rev. B, 42, 7363-7369. 
PENDRY, J. B. (1974). Low-Energy Electron Diffraction. London: 

Academic Press. 
PENG, L.-M. & WHELAN, M. J. (1990). Proc. R. Soc. London. Ser. 

A, 431, I 11-123. 
VAN DYCK, D. (1980). J. Microsc. 119, 141-152. 
WANG, Z. L. (1990). Phys. Rev. B, 41, 12818-12837. 
WATANABE, K., KJKUCm, Y., HtRATSUKA, K. & YAMAGUCHI, H. 

(1990). Acta Cryst. A46, 94-98. 
YOSHIOKA, H. (1957). d. Phys. Soc. Jpn, 12, 618-628. 
ZHAO, T. C., POON, H. C. & TONG, S. Y. (1988). Phys. Rev. B, 38, 

1172-1182. 

Acta Cryst. (1994). A50, 741-748 

On the Statistical Analysis of Orientation Data 

BY NIELS C. KRIEGER LASSEN AND DORTE JUUL JENSEN 

Materials Department, Riso National Laboratory, DK-4000 Roskilde, Denmark 

AND KNUT CONRADSEN 

The Institute of Mathematical Statistics and Operations Research, The Technical University of Denmark, 
DK-2800 Lyngby, Denmark 

(Received 18 February 1994; accepted 22 April 1994) 

Abstract 

The statistical analysis of data in the form of orienta- 
tions is a relatively new discipline and results from 
the literature on this subject are not yet widely 
known outside the statistics community. This paper 
provides an introduction to and the key references 
for statistical methods for analysing orientation data. 
More specifically, the problem of estimating an 
unknown orientation is considered and results on the 
precision of such an estimated orientation are 
described. The calculation of average orientation and 
dispersion parameters for a sample of orientations is 
also considered. Finally, procedures for generating 
and testing for random orientations are described. 
The methodology is illustrated with crystal orienta- 
tion data obtained from the analysis of electron 
back-scattering patterns. 

1. Introduction 

Orientation data arise naturally in many scientific 
areas, notably in the earth sciences, astronomy and 
biology. Within the field of materials science, for 
example, the development of techniques for meas- 

© 1994 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

uring local lattice orientations in polycrystalline 
materials has opened up the way for wholly new 
types of investigations. These techniques, especially 
the electron back-scattering pattern (EBSP) tech- 
nique in scanning electron microscopy and the 
Kikuchi diffraction technique in transmission elec- 
tron microscopy, have recently been a major subject 
at several conferences and workshops (Bunge, 1993, 
1994). These modern techniques for measuring local 
lattice orientations are convenient and rapid in use 
and the EBSP technique has recently even been fully 
automated (Wright & Adams, 1992), thus allowing 
large numbers of orientation data to be collected. 
Statistical methods for analysing such data, however, 
have only very rarely been applied. As a result of 
this, for example, little is known about the precision 
by which crystal orientations can be determined. 
Another example of the application of orientation 
statistics is when the average and dispersion of a 
sample of orientations is to be determined. For 
example, it is demonstrated in the final section of this 
paper that using the arithmetic mean of Euler angles 
as a measure of an average orientation cannot gen- 
erally be recommended. 
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The aim of the present paper is to introduce and 
present statistical methods for analysing orientation 
data in a reasonably accessible form that should 
allow scientists without a statistical background to 
apply the results. The computations involved may 
seem complicated for those unfamiliar with matrix 
calculations and multivariate statistics but it should 
be noted that these calculations are easily (and rapid- 
ly) performed using standard mathematical library 
routines. It must also be emphasized that many 
extensions, generalizations and details have of neces- 
sity been omitted and the reader is encouraged to 
study the original publications. 

The following sections deal with the problem of 
estimating an unknown orientation and describing its 
precision. They also describe how a sample of 
orientations may be summarized or modelled by a 
probability distribution. On the basis of this distribu- 
tion, parameters describing the average and concen- 
tration of orientations are introduced. Finally, it is 
shown how one may test for and conveniently gener- 
ate random orientations. The techniques are illus- 
trated with orientation data obtained from the 
analysis of electron back-scattering patterns but are 
of course generally applicable. 

2. Background and basic principles 

In classical statistics, the observed data are in the 
form of counts, real numbers, unrestricted vectors or 
matrices. The topic of orientation statistics is, on the 
other hand, concerned with observations that are 
rotations of space (usually two- or three- 
dimensional) and the data are therefore restricted 
matrices as described below. Orientation statistics 
are closely related to the better established field of 
directional statistics, which is concerned with direc- 
tions in space. A recent overview of the statistics of 
directions is given by Jupp & Mardia (1989) and the 
books by Mardia (1972), Watson (1983) and Fisher, 
Lewis & Embleton (1987) are classical references. 
The following description is limited to directions and 
orientations in three-dimensional space since this 
covers most situations of practical importance. 

Initially, orientations and their basic properties 
must be defined in mathematical terms. The orienta- 
tion of an object in three-space can generally be 
described by a rigid configuration of three dis- 
tinguishable directions (see Downs, 1972). These 
directions are conveniently represented by three 3 x 1 
column vectors xi, i = 1, 2, 3, whose elements are the 
coordinates of the ith direction measured in some 
fixed standard (rectangular and right-handed) 
Cartesian coordinate system, the reference system. 
Furthermore, it is convenient to let the vectors be of 
unit length, x,.rxi = 1 and aligned so that x l, x2 and x3 
form the axes of a standard Cartesian coordinate 

system (O,Xl,X2,X3). If X is the 3 x 3 matrix whose 
columns are x~, x2 and x3, the orientation of the 
object is rigidly described by X. It is evident that 
XrX = XX r =  I, where I is the 3 x 3 identity matrix, 
and that de t (X)=  +1, since X represents the 
rotation between two right-handed Cartesian coordi- 
nate systems. The collection of 3 x 3  matrices X 
satisfying XvX = I and det (X) = + 1 is a representa- 
tion of the group of all proper rotations, the so- 
called special orthogonal group SO(3). 

Two fundamental distributions for rotations and 
directions are briefly introduced in the following. In 
some respects they can both be regarded as the 
'normal distributions' for data consisting of rotations 
and directions, respectively. 

As mentioned above, directions in three-space are 
conveniently described by unit vectors x satisfying 
xrx = 1. Thus, the sample space of directional data is 
the unit sphere S 2 in three-space. The most widely 
used distribution employed for modelling spherical 
or directional data is the Fisher (or Fisher-von 
Mises) distribution (Fisher, 1953) with probability 
density 

f(x;m,k) = (k/47r sinh k) exp (kmrx) (1) 

with respect to the uniform distribution on S 2, where 
the mean direction m is the unit three-vector maxi- 
mizing (1) and k _> 0 is a concentration parameter. 
The distribution is rotationally symmetric around m 
and becomes successively more concentrated as k 
approaches infinity. For k = 0, x is uniformly distrib- 
uted over the unit sphere S 2. Given a sample of 
directions x~, the maximum-likelihood estimate ~ of 
the mean direction is found by maximizing Ymrxi = 
Ycos0;, where 0; is the angle between m and xi. For 
the maximum-likelihood estimate of k, see, for 
example, Watson (1983). 

The Fisher distribution (1) for directional or 
spherical data can be generalized to describe a distri- 
bution for orientations X on SO(3) (or more gen- 
erally on Stiefel manifolds) as proposed by Downs 
(1972). This distribution is now known as the matrix 
Fisher distribution (Khatri & Mardia, 1977) and it 
has probability density 

F(X;M,K) = a(K) exp [tr (KMXr)] (2) 

with respect to the uniform distribution on SO(3). 
F = KM is a 3 x 3 parameter matrix that describes 
both the mean orientation M E SO(3) and the con- 
centration K of the distribution, where K is a 3 x 3 
symmetric matrix, a(K) is a normalizing constant 
that depends only upon the eigenvalues of K. That 
the matrix Fisher distribution for orientations is a 
generalization of the Fisher distribution for direc- 
tional data may be clarified by the following obser- 
vations: The exponent in (1), exp(kmrx), may be 
written exp[mr(kl)x] and a generalization would 
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then be exp [tr (MVKX)] = exp [tr (KMXr)], the 
exponent of (2). Note that, if K = KI, 
exp[tr(KMXV)]=exp[Ktr(MXV)] and hence the 
matrix Fisher distribution becomes 'isotropic', i.e. 
depends solely on the orientation 'distance' tr (MXr). 
For a sample of orientations Xe, the maximum- 
likelihood estimate 1~1 of the mean orientation is 
found by maximizing Y.tr (MX~. The form of a(K) is 
unfortunately extremely complicated and this makes 
maximum-likelihood estimation of the parameter 
matrix K very difficult. However, some simpli- 
fications and approximations have been described 
recently by Bingham, Chang & Richards (1992) and 
Wood (1993). 

3. The estimation of an unknown orientation 

As described above, the orientation of an object in 
three-space can be represented by a matrix X 
SO(3), which describes the rotation between two 
standard Cartesian coordinate systems; one fixed to 
the object (O,fil,fi2,fi3) and one fixed to the 'world' 
(O,¢1,~2,¢3), the reference or world system (shortly 
denoted U and V, respectively). Since only the 
rotation of the two frames is considered (not the 
translation), U and V can be thought to have a 
common origin O. The orientation of the object with 
respect to the reference system V is then represented 
by the matrix X, whose columns x~, x2 and x3 con- 
tain the coordinates of ill, fi2 and fi3 measured in V. 
When crystal orientations are determined from elec- 
tron back-scattering patterns (see, for example, 
Randle, 1992), the axes of U are chosen parallel to 
certain standard directions in the crystal lattice and 
the axes of V are chosen so that 91 and 02 are in the 
plane of the pattern. 

To determine the unknown orientation X, at least 
two directions (unit vectors) must be measured in 
both U and V. Let (u~,v~), i = 1,...,n, represent n pairs 
of 3 x 1 column vectors of unit length measured in U 
and V, respectively, so that, without errors, we 
would have v,. = Xui. In most practical situations, the 
vectors u,. and/or v; are measured with some error 
and X must be estimated from the data using an 
appropriate measure of the total error. This problem 
is to some extent similar to the problem of fitting a 
set of data points to a straight-line model; the linear 
regression problem. The matrix ~ minimizing the 
sum of squared errors defined by 

SSE(X) = Ely;-  Xu~l 2 = 2 n -  2Ev~rXu~ (3) 
i i 

is described as the least-squares estimate of X. The 
problem of calculating R was first considered and 
solved by MacKenzie (1957) [though his solution 
may result in d e t ( X ) = -  1] and later refined by 
Stephens (1979). The least-squares estimate of the 

unknown orientation X can be found by performing 
a singular-value decomposition (for a routine see, for 
example, Press, Flannery, Teukolsky & Vetterling, 
1988) of a 3 x 3 matrix A: 

A = (1/n)Zuiv/r= O~AO r (4) 
i 

modified so that O1, OzESO(3) and A =  
diag(A~,A2,a3) (a diagonal 3 x 3 matrix) with A~ ___ A2 
- ]a3. If not more than one of the singular values A~ 
of A is equal to zero, the least-squares estimate is 
uniquely given by 

= O2OT. (5) 

When only two pairs of vectors (u~,v~), i = 1,2, are 
available (n = 2), A is singular and the singular value 
A3 is equal to zero but the least-squares estimate can 
still uniquely be found from (5). 

In many practical situations, the vectors u~ are (or 
can be assumed to be) known without error. This is, 
for example, true when crystal orientations are 
determined from electron back-scattering patterns 
since ui here represents the normal to specific (and 
known from the process of indexing) crystal planes. 
Furthermore, it is often reasonable to assume that 
the v/s are rotationally symmetrically distributed 
around Xui and that the underlying distribution is 
Fisher flx;Xui,k). Under these assumptions, it can be 
shown that the least-squares estimate ~: found from 
(5) is also a maximum-likelihood estimate of the 
unknown orientation X (Moran, 1976). 

The problem of estimating an unknown orienta- 
tion as described above was named spherical regres- 
sion by Chang (1986), who made a comprehensive 
study of the statistical properties of ~. Recent sur- 
veys of this subject are given by Watson (1989) and 
Chang (1993). 

4. A confidence region for X 

In order to make inferences about the precision of an 
orientation estimated as above, some confidence 
regions are described. Such confidence regions can 
only be described analytically when certain assump- 
tions about the data are made. Under different 
assumptions about the underlying distribution 
and/or sample size, approximate confidence regions 
for X have been described by Chang (1986), Rivest 
(1989) and Chang (1989) and a very useful overview 
is given by Chang (1987). 

Assume here that ui are known without error and 
that v; are independently Fisher distributed f(vt;Xui,k) 
with common concentration parameter k. If k is 
large (corresponding to relatively small errors), an 
approximate confidence region for the orientation X 
can be determined as described in the following; for 
confidence regions obtained using other assumptions, 
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the reader should consult Chang (1987). In the case 
of crystal-orientation determination from electron 
back-scattering patterns, both the Fisher model and 
the large-k assumption can be shown to be suitable. 
The Fisher model was verified by applying different 
goodness-of-fit tests [both so-called Q-Q plots and 
more formal procedures were used; see, for example, 
Fisher et al. (1987), p. 117] to data sets (u;,vi) from 
several different patterns. Data from several patterns 
are needed to verify the Fisher model since typically 
only 8-12 bands (data points) are observed in a 
single pattern and 25 is regarded as the minimum 
number of data points for a reliable test (Fisher et 
al., 1987, p. 122). All goodness-of-fit tests showed 
good agreement with the Fisher model unless gross 
errors resulting from incorrect indexing were present 
in the data set. With regard to the large-k assump- 
tion, a k value of, say, 100 is usually assumed to be 
large and since typical values for electron back- 
scattering patterns are of the order of 3000-20 000, 
this assumption seems appropriate. 

In order to describe a confidence region for esti- 
mated orientations, a mathematically convenient 
parameterization of SO(3) must be introduced [for a 
discussion on this subject see Chang (1993)]. The 
so-called exponential parameterization turns out to 
be very useful for describing small rotations such as 
those in a confidence region. The parameter vector 
h E R 3 is mapped by @ to an orientation qb(h) 
SO(3), which represents fight-hand-rule rotation of 
Ihl rad around the axis h/Ihl. If one denotes the 
rotation angle to = Ihl and the rotation axis t = 
[t~t2t3]r=h/lh], then the corresponding orientation 
matrix can be found from 

0 -- t3 t2 ) 
~ ( h ) = I + s i n t o  t3 0 -t~ 

- -  t 2  t~ 0 

0 --t3 t2 )2 
+ (1 - cos to) t 3 0 - t 1 

- t2 tl 0 

(6) 

Conversely, if an orientation X is given, to and t (and 
h = tot) can be found using 

1 + 2cos to = tr (X) 

0 --t3 
X - X r = 2sin to t3 0 

- t2 tl 

t2) 
l l  • 

(7) 

It should be emphasized that the exponential param- 
eterization presented above is not only convenient 
for describing small rotations but is a generally 
applicable and very useful parameterization. 

In order to describe a confidence for X, the 
following symmetric 3 x 3 matrix Z must first be 
calculated: 

Z = ( 1 / n ) E u , u l .  (8)  i 
This matrix summarizes information about the 
position of the points corresponding to u;. Let ~rl _> 
or2-> ~r3-> 0 be its eigenvalues satisfying ~rl + ~r2 + 
~r3 = 1 and let z~, zz and z3 be the corresponding 
eigenvectors. The eigenvector z~ will lie in the centre 
of the points u;, and the plane defined by z~ and z2 
will intersect the unit sphere in the great circle that 
best fits u;. If o';= 1/3, the u;'s are uniformly dis- 
tributed on the unit sphere. 

If k is known, an approximate ( 1 -  a) confidence 
region for X contains all orientations ~ h ) ~  with h 
satisfying 

hr(l - ~ r ) h  < (1/nk)x2_,~(3), (9) 

where X2_,,(3) is the ( 1 -  a) percentage point of the 
2 "2 distribution with three degrees of freedom. The 
confidence region is thus made apparent by following 
the estimated orientation ~ by a small rotation ¢(h), 
where h must satisfy (9). The region of h satisfying 
(9) is an ellipsoid with axes ~z~, ~z2 and ~z3 and 
corresponding axis lengths to; given by 

toi= [(1/nk)2"~_,~(3)/(1-oi)] ~/z. (10) 

The axis lengths are denoted to1, to2 and to3 to 
emphasize that they represent angles of rotation. The 
largest rotation that is allowed within the confidence 
region for X is thus to~ in the direction of Rz~. 

In most practical situations, the concentration 
parameter of the Fisher distribution k is unknown 
and must be estimated from the data. For large k, a 
good approximation to the maximum-likelihood esti- 
mate of k is (Watson, 1983) 

E=  2n/Ely; - ~u;I 2. (11) 

When k has been estimated from (11), the approxi- 
mate ( 1 - a )  confidence region for X contains all 
orientations q~h)~ with h satisfying 

hT(l -- ~ r ) h  < (3/nfc)Fl_,~(3,2n- 3), (12) 

where Fl _~(3,2n- 3) is the ( 1 -  a) percentage point 
of the F distribution with (3,2n-3) degrees of free- 
dom. For the case of unknown k, (10) is modified by 
replacing X 2_ ~(3) with 3F~_ ,~(3,2n- 3). 

5. T h e  a v e r a g e  and  c o n c e n t r a t i o n  o f  o r i e n t a t i o n s  

Consider now the problem of summarizing a given 
sample of orientations Xi ~ SO(3), i = 1,...,n, by fit- 
ting it to a model that depends on a few adjustable 
parameters. The model considered here is the matrix 
Fisher distribution a(K)exp[tr(KMXr)] so the 
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sample is summarized by the mean orientation M 
and the concentration matrix K. 

The 3 x 3 parameter matrix F = KM is said to 
decompose into its polar form, where M and K are 
known as the polar and elliptical components of F, 
respectively. K is a 3 x 3 symmetric matrix assumed 
to be definite (positive or definite) and M belongs to 
SO(3). The matrix F also has a singular-value 
decomposition defined by 

F = a I ) , r  (13) 

and modified so that & r SO(3) and D~ = 
diag(qbl,~b2,~3 ) with ~b~ _> ~b: _ [~b3[. The polar form is 
related to this singular-value decomposition through 

M = &I', K = zXD,z~ r. (14) 

It can be shown (Downs, 1972; Prentice, 1986) that 
the matrix Fisher distribution a(K)exp[tr(KMXr)] 
has a maximum at X = M if tD3 > 0 and a minimum 
at X = M if ~b3 < 0. Furthermore, the clustering of X 
around M increases with increasing values of ~b;. It is 
therefore customary to describe M as the mean 
orientation of X and K (or D~) as the concentration 
matrix. If K = 0, then X is uniformly distributed over 
so(3) .  

For a sample of orientations X;, the maximum- 
likelihood estimate 1(/1 of the mean orientation is 
found by maximizing Y.tr(MX~. Since tr(MX/r) = 
2cos to; + 1, where to; is the rotation angle between M 
and X;, the mean orientation is found by maximizing 
Ecos toe. This natural definition of a mean orientation 
is similar to the definition of a mean direction m in 
the Fisher distribution. 

A procedure for calculation of the maximum- 
likelihood estimate 1~1 of the mean orientation M is 
now described. First, the maximum-likelihood esti- 
mates of A and F must be found from a singular- 
value decomposition of the arithmetic mean of the 
orientations X/: 

n 

= (l/n) Z X; = &I)gF, (15) 
/ = 1  

modified as in (13) so that Dg = diag(g~,ga,g3) with 
g~---g2 -> [g31. The maximum-likelihood estimate of 
the mean orientation is then 1~I =~dF (Khatri & 
Mardia, 1977). 

A similar procedure for calculation of the 
maximum-likelihood estimate of the concentration 
matrix K (or D~) is not easily described, owing to the 
complicated form of the normalizing constant a(K) 
(Khatri & Mardia, 1977). However, a procedure that 
simplifies the calculations of a(K) has been described 
recently by Wood (1993). 

The expectation value of X has the polar form 
E(X) = HM, where the elliptical component H is 
described as the precision matrix (Downs, 1972). The 
closer H is to the identity matrix, the closer the 

clustering of X around M. The maximum-likelihood 
estimate of H can be found from the singular-value 
decomposition (15) as 1~1 = Z~d)g~, r. 

Again, owing to the complicated form of the 
normalizing constant in the matrix Fisher distribu- 
tion, tests and confidence regions for the mean 
orientation M and the concentration matrix K are 
not easily described. However, for orientations on 
SO(3), statistical methods based on moments 
(without assumptions about an underlying distribu- 
tion) have been developed by Prentice (1984, 1986, 
1989). It is beyond the scope of this paper to give 
details of these very useful methods and the reader is 
referred to the original papers. 

6. Generating and testing for random orientations 

It is well known that orientations in SO(3) can be 
represented by normalized quaternions (Altmann, 
1986). A quaternion Q is an object consisting of 
a scalar qo and a three-dimensional vector q = 
(qlqzq3)r: Q = [qo;q]. If q = 0, Q is a real quaternion; 
if qo = 0, Q is a pure quaternion; if q0 = 0 and q = 1, 
Q is known as a unit quaternion. The norm IQ of 
O is defined by 10 2 = qo: + Iq 2 = qo 2 + q~ + q~ + q3 2 
and a quaterniori with unit norm I Q I -  1 is called 
normalized. In the literature, the normalized quater- 
nion is often confused with the unit quaternion but 
here we use the notation of Altmann (1986) so that 
orientations are parameterized by normalized and 
not unit quaternions. Let x = (XoXlX2x3) T be a four- 
dimensional vector of unit length representing the 
normalized quaternion [Xo;(XlX2X3) r] and let Ha 
denote the unit sphere in four-dimensional space 
with antipodes identified (+ x and - x  are identified). 
It may then be shown that, if x is uniformly distri- 
buted on Ha, the corresponding 3 x 3 orientation 
matrix X(x) ~ SO(3) defined by 

X(x) = x ( -  x )  = 

( ~ + x~-  ~ -  x 2 2(xlx2- XoX3) 2(xlx3 + XoX2) 

2(XlX2 + X0X3) X•-- X 2 + X~2-- X~3 2(XzX3- XoX,) ] 

2(x,x3 - XoX2) 2(x2x3 + XoX0 ~ -  ~ - x~ + x3 2] 

(16) 

is uniformly distributed on SO(3) (Moran, 1976). 
This elegant correspondence between unsigned direc- 
tions (axes) in four-space and orientations in three- 
space provides an easy way to construct random 
orientations: 

(1) Let n;, i =  0,...,3, be independent simulations 
from the standard normal N(0,1) distribution; n; 
[ -  oo;oo]. 

(2) Let 
xi=ni/(n2+n~+n~+n2) 1/2. (17) 
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(3) Use the v e c t o r  x = ( x o x l x 2 x 3 )  T in (16) to 
obtain a random orientation X. 

The first to exploit normalized quaternions in 
orientation statistics was Moran (1976). Later, 
Prentice (1978, 1986) used the quaternion param- 
eterization of SO(3) to establish a one-to-one rela- 
tionship between the matrix Fisher distribution on 
SO(3) and the so-called Bingham distribution on Ha 
(Bingham, 1974). It may be shown (Prentice, 1986) 
that the average orientation matrix M introduced 
above in connection with the matrix Fisher distribu- 
tion can be determined in a simple way using 
normalized quaternions. If a sample of orientations 
Xi is represented by their corresponding quaternions 
_ xi (with the sign chosen so that x0 - 0), the quater- 
nion m representing M can be found from the arith- 
metic mean x = n-  ~Y.x~ as m = x / x .  The authors are 
grateful to a referee for reminding us of this simple 
approach to orientation averaging. 

Finally, consider the problem of testing samples of 
orientations Xi on SO(3) for uniformity. For a 
detailed discussion on the subject, the reader is 
referred to Prentice (1978). A likelihood ratio test for 
uniformity on SO(3) against the alternative of a 
matrix Fisher distribution (with K ~ 0) uses the 
generalized Rayleigh statistic 

R = 3n[tr (XZ~X)], (18) 

where X is the arithmetic mean of the n X's and R is 
asymptotically distributed as X9 z (the X 2 distribution 
with nine degrees of freedom) under the null hypoth- 
esis. The hypothesis is rejected when R is large 
compared with the percentile values for the ,t ,2 distri- 
bution. 

7. Applications 

For the purpose of illustration, some of the tech- 
niques described above are applied to crystal- 
orientation data determined through the analysis of 
electron back-scattering patterns obtained in a scan- 
ning electron microscope (see, for example, Randle, 
1992). An electron back-scattering pattern contains 
the traces of certain crystallographic planes in the 
crystal lattice from where the pattern originates. The 
directions of the normals to these planes are meas- 
ured in two coordinate systems V and U, where V is 
fixed to the pattern and serves as the reference frame 
and U is fixed to certain standard directions in the 
crystal. The outcome of the analysis of such a pat- 
tern is n pairs of unit vectors (u/,vi), i = 1,...,n, which 
describe n different directions measured in U and V. 
As an example, Table 1 lists the coordinates of eight 
pairs of vectors. 

The object is to estimate the orientation of the 
crystal X, measured with respect to the reference 
frame V [normally the orientation of a crystal is 

Table 1. The directions o f  the normals to eight crystal 
planes measured in a coordinate system f ixed to the 
crystal (u/) and a coordinate system f ixed to the 

recorded diffraction pattern (v/) 

u~ 
(0, - 1,0)/11,2 
( -  !,1,1)/3 z'2 
( -  ! , -  1,1)/312 
( -  1,0,1)/2 ~2 
( 1 , - 3 , - 1 ) / 1 1 1 2  
(I,1,0)/212 
(0,1,10/21'2 
(1,3,1)/1112 

v7 
( -  0.941737, - 0.005831,0.336299) 
(0.610173,0. 788681,0.075313) 
( -  0.445052,0.772446,0.453051) 
(0.105818,0.944008,0.312491) 
( - 0.891762, - 0.421736,0.164007) 
(0.750393, - 0.659185,0.048848) 
(0.874536,0.308446,0.374228) 
(0.986600, - 0.138188,0.086739) 

measured with respect to a coordinate system W 
fixed to the sample but since the rotation between V 
and W is constant (it does not change from crystal to 
crystal) this extra change of coordinates is of no 
interest here]. From (4), the matrix A and its 
singular-value decomposition is found to be 

A = 

0.048631 

0.549877 

0.169362 

-0.275471 -0.051984~ 

0.002959 -0.040640 / 

0.234054 0.095917] 

Or= 
-0.021560 0.760173 0.649363~ 

-0.940079 0.205650 -0~271954 / 

-0.340274 -0.616316 0.710189] 

A = diag(0.580703,0.371720,0.047425) 

0 2  - -  

-0.991221 0.122859 0.048847) 

-0.131711 -0.949770 -0.283882 . 

0.011516 -0.287823 0.957614 

The least-squares estimate of the crystal orientation 
is then found from (5): 

0.146484 0.943808 0.296257~ 

= -0.903492 0.005702 0.428566/. 

0.402795 -0.330444 0.853559] 

The most popular and widespread parameterization 
of SO(3) is by the so-called Euler angles (q~,q~,~o2) 

~ ee, for example, Randle, 1992). In Euler angles, 
corresponds to (q~,q~,q~2) = (50.635°,31.399 °, 

34.655°). 
In order to describe a confidence region for X, k in 

the Fisher distribution (1) must first be estimated. 
Using (11), k ~ = 6586.38 is obtained. The next step is 
to calculate Z from (8): 

Z = 

0.231061 

0.062500 

-0.145833 

0.062500 -0.145833~ 

0.537879 0.130682 / 

0.130682 0.231061] 
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and then calculate its eigenvalues (O ' I ,O '2 ,O '3 )  = 
(0.586227,0.367086,0.046687) and the corre- 
sponding eigenvectors z l - (0.028199,0.941812, 
0.334956) r, z2 = ( -  0.757701,0.198423,0.621705) r 
and z3=(0.651992,-0.271328,0.708016) r. By con- 
version of points h on the dlipsoid defined by (12) to 
Euler angles, a plot of the 9 5 o  confidence region for 
X in Euler space can be obtained. A scatter plot of 
points (represented by small spheres) on the border 
of this region in Euler space is given in Fig. 1. The 
largest rotation away from X contained in the 95% 
confidence region (12) is 

tol = {[3/8(6586.38)]Fo.95(3,13)(1 - 0.586227)} 1/2 

= 1.24 ° 

around the axis ~zt = (0.992253,0.123443, 
-0.013952) r. Equation (12) can be used for testing 
whether, for example, A defined as (01 ) 

A =  - 1 0  

0 0  

belongs to the 95% confidence region. From qb(h)~ 
= A ,  we get ~ (h )=Ai~  r and, from (7), h -  
( -  0.437730,0.329972,0.080129) r. The left-hand side 
of (12) then gives 0.1606 whereas the right-hand side 
gives (3 x 3.41)/(8 x 6586.38) = 0.00019, so A is 
clearly not within the confidence region. 

The orientation of another crystal was then calcu- 
lated ten times as described above, using different 
sets of crystal planes and therefore different sets of 
vector pairs (ui, vi). The results are given in Table 2 
using Euler angles. Note that the scattering in the 
angles tp~ and ~/~2 is quite large because the orienta- 

Table 2. The orientation of  a crystal measured ten 
times using different sets of  crystal planes 

The orientations are represented by Euler angles (*). 

168.983 2.383 104.663 
187.192 2.067 87.158 
172.207 2.350 100.783 
181.485 2.152 92.230 
167.942 1.920 106.925 
175.477 2.827 97.737 
152.158 1.768 120.879 
167.776 1.991 104.736 
164.327 2.232 107.874 
173.900 2.241 99.795 

tions are close to the singularity in Euler space at ~b 
0 °" 
The aim is now to determine estimates of the 

average orientation M and the parameters D~ 
describing the scattering of this sample of orienta- 
tions (assuming the matrix Fisher distribution is a 
suitable model for the data). From a singular-value 
decomposition of the arithmetic mean as described in 
(15), 

/ 0 . 0 5 9 7 9 3 - 0 . 9 9 7 4 1 8  0.037063~ 

X = / 0 . 9 9 8 0 9 4  0.059556 -0.007753 / 

\0.005534 0.037428 0.999256] 

Dg 

z~= 
-0.210822 -0.474136 0.854838~ 

-0.019197 0.876333 0.481324 / 

-0.977336 0.085063 -0 .193853]  

= diag (1 - 2.444720 x 10 - 5,1 - 9.823480 x 10 - 5, 
1 - 1.108722 x 10 -4) 

37 

36 

35 

t02 

3~ 

3.0 

Fig. 1. The 95% confidence region for the crystal 
orientation determined from the data in Table 1. 
The small spheres represents points on the 
boarder of this region in Euler space. 
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-0.037176 0.172559 -0.984297~ 

F = 0.846866 0.528338 0.060639]. 
/ 

0.530506 -0.831313 0.165776] 

A maximum-likelihood estimate of the mean orienta- 
tion M in the matrix Fisher distribution is then 1~I = 
AF, which expressed in Euler angles is (~0~,~b,~o2)= 
(171.598°,2.169°,101.824°). This mean orientation is 
of course different from the result that would have 
been obtained by simply taking the arithmetic mean 
of the Euler angles. Such a simple approach to 
orientation averaging is not recommended. By the 
approach of Wood (1993) and with an approxi- 
mation described by Mardia & Zemroch (1977), the 
concentration parameter is found as D ~ =  
diag(5.311 x 104,3.156x 104,2.615 x 104). The large 
values for ~b, indicate, as expected, a large clustering 
of the X's. 

Consider the problem of testing whether the X's 
can be assumed to be uniformly distributed on 
SO(3). In this case, the answer is clearly no but a 
formal test for the hypothesis of uniformity can be 
obtained using the statistic R defined by (18). For the 
data of Table 2, R = 3 x 1 0 x 2 . 9 9 9 5 3 = 8 9 . 9 8 6 ,  
which should be compared to ,t'~. The hypothesis is 
clearly rejected. 

The authors express their appreciation to the 
referees for their careful reading of the manuscript 
and helpful suggestions. 
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Abstract 

This paper describes a new trial-and-error direct- 
methods procedure called STEP. A set of strong 
reflections, sufficient to solve the structure, is divided 
into a hierarchy of smaller soluble and connected 
subsystems. Within each subsystem, the reflections 
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are required to be well connected with each other, 
given that the phases of all reflections in the previous 
subsystems are known. A trial-and-error procedure is 
then employed to provide an approximate solution 
to an overdetermined set of equations. Subsequently, 
phases are refined by one of two available tangent 
formulae and then assessed for plausibility by figures 
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